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Proportionally damped structures give non-proportionally damped math-
ematical models when tuned mass damper (TMD) devices and/or viscous
dampers are installed. The precise analysis of unwanted enforced vibration of
such a combined system, i.e., of the structure plus the TMD devices and/or
dampers, is very cumbersome and inefficient for structures with many (e.g.,
103–105) degrees of freedom. This short paper gives a convenient and efficient
method for computing the results for such problems which involves only the first
few undamped modes of the structure and is not iterative. Results are given for
a simple illustrative truss and for an actual offshore jacket platform.
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1. INTRODUCTION

Tuned mass damper (TMD) devices are widely used for suppressing unwanted
enforced vibration of engineering structures, e.g., long-span bridges, high rise
buildings and rotating machines. Although many related publications are
available [e.g., 1–7], a good solution is not yet available for the following very
basic problem.
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If the finite element method (FEM) model of the structure has many degrees
of freedom (DOF), e.g., 103–105, the equations of motion are usually written on
the assumption of proportional damping before attachment of TMD devices or
dampers in order to use the mode superposition scheme. However, when TMD
devices and/or dampers are attached to that structure, their damping coefficient
will not be the same as that of the structure and so the resulting equations of the
combined system are non-proportionally damped. Hence, although well-known
programs, e.g., SAP and ANSYS, can solve harmonic enforced vibration for
proportionally damped structures with many DOF very easily, the installation of
TMD devices and/or dampers on such structures makes the accurate analysis of
their reduced amplitude vibration very much harder. The conventional method
for computing accurately the responses of such a combined system is to use its
complex modes to decouple the corresponding equations of motion, which is
feasible only for relatively simple structures because of the high CPU time and
storage space requirements.

An alternative approach [8] uses the undamped modes of the original structure
to reduce the equations of motion of the combined system. This gives equations
with far fewer DOF, but the damping matrix is non-diagonal, so that the
equations are coupled and hence can only be solved by a step-by-step integration
method. Obviously, this alternative is not particularly straightforward and
gives results that are not accurate unless a long time history is used for the
computation.

Reference [6] gives an iterative algorithm for dealing with such non-
proportionally damped structures, but it has been proved [7] that this algorithm
diverges under some circumstances.

The present paper develops a new computational method for solving such
non-proportionally damped problems. This method uses only the undamped
modes of the original structure to reduce the equations of motion of the
combined system and hence to enable the solution to be computed quickly. The
method is direct, i.e., no iteration is required, and so the problem of divergence
does not arise. Hence the method is convenient and precise.

2. BASIC PRINCIPLE AND ALGORITHM

One assumes that the equations of motion of the discretised original structure
are

[Mo ]{ÿo}+[Co ]{ẏo}+[Ko ]{yo}= {Fo}= {P} exp(iut), (1)

in which [Mo ], [Co ] and [Ko ] are the n× n mass, damping and stiffness matrices
of the original structure, respectively, {yo} is its displacement vector and {Fo} is
the sinusoidal loading vector, which has amplitude vector {P} and angular
frequency u, where i=z−1. The first q normalised real modes comprise the
n× q matrix [Fo ] (q�n), which satisfies the equations

[Fo ]T[Mo ][Fo ]= [I]q , [Fo ]T[Co ][Fo ]= [Co ]*= [2zjvj ], (2, 3)

[Fo ]T[Ko ][Fo ]= [L2
o ], {Fo}*= [Fo ]T{Fo}=[Fo ]T{P} exp(iut), (4, 5)
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where [I]q is the q× q unit matrix, [2zjvj ] is a diagonal matrix with 2zjvj as its jth
diagonal element, zj and vj are the damping ratio and angular frequency
associated with the jth real mode and [L2

o ] is the q× q diagonal matrix with v2
j

as its jth diagonal element.
If m TMD devices and r isolated viscous dampers are used, the combined

system will have m more DOF than the original structure. Suppose that the
assembled stiffness, mass and damping matrices of all of these m TMD devices
and r dampers are, in the structural co-ordinate system

[K]D =$Kss

KTs

KsT

KTT%, [M]D =$Mss

0
0

MTT%, [C]D =$Css +CD
ss

CTs

CsT

CTT%, (6)

in which subscript s refers to the DOF of the original structure, subscript T refers
to the added DOF for all m TMD devices and CD

ss represents the contribution of
all r isolated dampers, which can be regarded as degenerated TMD systems that
add no extra DOF to the system. Hence the rows and columns of matrices [K]D,
[M]D and [C]D that correspond to those of the original structure have been added
to by rows and columns corresponding to the TMD devices, and all three will
therefore be (n+m)× (n+m) matrices. Thus, the combined system has the
global stiffness, mass and damping matrices

[K]=$Ko +Kss

KTs

KsT

KTT%, [M]=$Mo +Mss

0
0

MTT%,
[C]=$Co +Css +CD

ss

CTs

CsT

CTT%, (7)

and the corresponding (n+m) element displacement vector is

{y}=6yo

yT7, (8)

in which the m dimensional displacement vector {yT} represents the
displacements of the masses of the TMD devices.

Now, by using equations (2)–(5) and introducing the co-ordinate
transformation matrix

[F]=$Fo

0
0
Im%, (9)

in which [Im ] is an m×m unit matrix, equation (7) can be reduced to

[K]*= [F]T[K][F]=$L2
o +FT

o KssFo

KTsFo

FT
o KsT

KTT %, (10)
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[M]*= [F]T[M][F]=$Iq +FT
o MssFo

0
0

MTT%, (11)

[C]*= [F]T[C][F]=$C*o +FT
o CssFo +FT

o CD
ssFo

CTsFo

FT
o CsT

CTT %, (12)

and the corresponding loading vector becomes

{F}*=$FT
o

0
0
Im%6Fo

07=6F*o
0 7=6[Fo ]T{P}

0 7 exp(iut) (13)

Now {y}, the displacement vector of the combined system before the DOF
reduction, can be expressed in terms of {z}, the displacement vector after the
DOF reduction associated with equation (9), by

{y}=[F]{z} (14)

and the equations of motion after this DOF reduction are

[M]*{z̈}+[C]*{ż}+[K]*{z}= {F}*. (15)

In general, these equations are not proportionally damped, and so are coupled.
However, since the loadings are sinusoidal, they can be expressed as

{F}*= {Q} exp(iut), (16)

in which

{Q}=6[Fo ]T{P}
0 7 (17)

and the solution to equations (15) can be expressed as

{z}=[{A}+i{B}] exp(iut), (18)

where {A} and {B} are two real constant vectors to be determined. Therefore
substituting equation (18), its derivatives {ż}=iu{z} and {z̈}=−u2{z}, plus
equation (16), into equations (15) gives

(−u2[M]*+ iu[C]*+ [K]*)[{A}+i{B}]= {Q}. (19)

Finally, expanding the left side and comparing its real and imaginary parts gives

[E]{A}+[D]{B}= {Q}, − [D]{A}+[E]{B}= {0}, (20)

in which

[E]= [K]*− u2[M]*, [D]=−u[C]*. (21)

It is very easy to compute solutions for {A} and {B} from the 2q linear
algebraic equations (20) and then to compute {z} and {y} from equations (18)
and (14). Note that in the above derivation the only assumption made is that
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only a limited number of modes (i.e., q) are taken for the mode superposition, so
that the method may be regarded as an accurate direct method.

3. COMPUTATION PROCEDURE

The computation procedure corresponding to the derivation described above
can be briefly summarised as follows:

(1) Compute the classical (real) modes [Fo ] and the corresponding eigenvalues
[L2

o ] of the original structure, then use equation (9) to generate [F].
(2) Use equation (6) to produce the assembled stiffness, mass and damping

matrices [K]D, [M]D and [C]D of all TMD devices and/or dampers.
(3) Use equations (10)–(12) to produce the stiffness, mass and damping

matrices for the combined system.
(4) Use equations (17) and (21) to compute vector {Q} and matrices [E] and

[D].
(5) Solve equations (20) for {A} and {B}.
(6) Substitute {A} and {B} into equations (18) and (14) to find the

displacements {y} for the system with TMD devices and/or isolated
dampers.

(7) If necessary, compute the internal forces and/or any other quantities of
interest from {y}.

4. NUMERICAL EXAMPLE

Two examples are given. The first is sufficiently simple for it to be fully
specified, so that it can be repeated and/or used as a comparator by other
authors, whereas the second is a major real-life structure for which it is
reasonable only to specify the main items of data.

Figure 1. 21 member plane truss.
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T 1

Horizontal (u11) and vertical (v11) displacement amplitudes for joint 11 obtained
using the first five natural angular frequencies (q=5)

Numbers and location of TMD devices used
ZXXXXXXXXXXCXXXXXXXXXXV
Number Between nodes At nodes u11(mm) v11(mm)

0 – – 41·78 15·81
2 10–11, 8–11 – 32·50 12·28
2 10–11, 9–10 – 30·09 11·57
2 10–11, 8–9 – 31·89 12·13
2 9–10, 8–11 – 39·57 15·02
3 9–10, 8–11, 10–11 – 28·58 10·91
4 9–10, 8–11, 10–11, 8–9 – 26·60 10·15
2 – 9, 11 40·74 15·42
2 – 8, 10 40·70 15·41

The first example is shown in Figure 1. It consists of a 21 element plane truss
which is located on a shaking table which imposes a horizontal acceleration of
1·0 exp(iut) m/s2, with u=16·9 (1/s). The length of each horizontal or vertical
member is 5 m, the axial rigidity of every member is 3×107 kN and all members
are massless. There is a lumped mass of 1000 kg at every node and hence its first
five natural angular frequencies are 16·92, 40·75, 46·41, 78·88 and 94·67 (1/s).
TMD devices with mass 100·0 kg, stiffness 28561·0 N/m and damping coefficient
100·0 kg/s are used to reduce the enforced structural vibration.

Table 1 shows the horizontal and vertical displacement amplitudes at node 11
when no TMD devices are installed (as a basis for comparison) and for eight
alternative configurations of up to four TMD devices (see Figure 2). These
devices were installed between joints, except for the final two cases, for which
they were attached horizontally at the joints. It can be seen that the four TMD
devices case gave the best results, reducing u11 by {(4·178−2·660)/
4·178}×100%=36·3% and v11 by 35·8%.

The second example is the jacket platform of Figure 3 which has been built in
the Bohai sea of northern China. Its height is 40 m and it has a square base with
side length 19·07 m The 3D FEM model used had 86 nodes, 183 beam elements
and 492 DOF and gave its lowest eight natural angular frequencies as 3·8325,
3·8811, 4·1619, 7·9105, 9·9539, 11·205, 11·547 and 12·091 (1/s). The damping
ratio used for all participating modes was 0·03 and it was assumed that two
parallel in-phase sinusoidal excitations P exp(iut) acted at nodes 5 and 11, in the
direction 5–9, with P=10 kN and u=3·85 1/s. TMD devices and/or viscous

Figure 2. Schematic diagram of a TMD device between two nodes A and B.
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Figure 3. Jacket platform.

dampers were optionally present, to give the eight cases of Table 2, in which the
second and third columns give the number of TMD devices, NT , and the number
of dampers, ND . The values of DM and DK given in the fourth and fifth columns
are the mass and stiffness of the TMD device, respectively, and DC in the sixth
column is the damping coefficient of each TMD device or viscous damper. The
seventh column usually shows, on each side of the dash, the numbers of a pair
of nodes connected by one of the TMD devices or viscous dampers. However,
for case 3 the number of a node and the alignment of a TMD device connected
to it are shown on either side of the dash, using the X and Y directions shown
on Figure 3. Note that case 1 is the original structure with no TMD devices or
dampers and is included as a comparator for the other cases.

T 2

Displacement amplitudes at node 86 and axial force amplitude of members 1–5
obtained using the first eight natural angular frequencies (q=8)

(4) (5) (6) (7) (8) (9) (10)(1) (2) (3)
DM DK DC Installation u86 v86 N1–5CASE NT ND

(kg) (N/m) (kg/s) type (mm) (mm) (kN)

1 0 0 – – – none 45·38 51·34 44·00
2 2 0 1000 14 800 380 42–43, 42–51 3·380 3·912 2·240
3 2 0 1000 14 800 380 42–X, 42–Y 9·066 11·01 9·018
4 2 0 1000 14 800 0 42–43, 42–51 3·375 3·923 2·243
5 0 2 – – 380 42–43, 42–51 45·38 51·34 44·00
6 0 2 – – 380 1–9, 4–7 43·72 49·33 42·28
7 0 2 – – 38 000 1–9, 4–7 13·44 20·66 8·457
8 2 2 CASE (3)+CASE (6) 9·037 10·88 8·924
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Columns (8)–(10) of Table 2 give the computed values of u86 and v86, the
amplitudes of the X and Y direction displacements at node 86, and of N1–5, the
amplitude of the axial force of the member connecting nodes 1 and 5. Case 1
shows that very strong resonant responses are caused for the original structure,
because the lowest two frequencies of the structure are very close together and
the excitation frequency u=3·85 (1/s) lies between them. When two TMD
devices with natural angular frequency zDK/DM=3·87 (1/s)1 u were installed
on the top deck, cases 2 and 3 show that very satisfactory results were obtained,
but with devices connecting two pairs of nodes, i.e., case 2, being substantially
better than two devices attached to one node of the deck, i.e., case 3. Further-
more, when the dampers in the TMD devices of case 2 were both removed, it had
very little effect, see case 4. Note that the damping ratio DC/(2zDMDK)=0·05
of these TMD systems was very small.

Case 5 shows that installation of two isolated dampers on the top deck with
DC equal to that of the devices of cases 2 and 3, was entirely useless for
suppressing the vibration. Case 6 shows that this remained almost true even
when the two dampers were installed between nodes 1 and 9 and between nodes
4 and 7, where they were subjected to much larger strains, unless their damping
coefficient is increased considerably, e.g., case 7 shows quite a good effect when
it was increased by a factor of 100. Finally, case 8 shows that if the two TMD
devices of case 3 and the two dampers of case 6 were installed simultaneously,
the effect was only very marginally better than for case 3, i.e., for the TMD
devices alone.

5. CONCLUSIONS

The problem of selecting appropriate values for the parameters of TMD
devices has not been addressed because it has been discussed extensively and
comprehensively elsewhere. Instead, the purpose of this article was to present an
accurate and efficient algorithm for structures which are non-proportionally
damped due to the installation of TMD devices and/or isolated dampers. The
results presented show the method gives reasonable results.

Although rather straightforward, the method is of significance because of the
wide range of practical engineering problems to which it can be applied. For
example, the results of Table 2 are for a large offshore platform and indicate
where TMD devices should be attached for best effect.

ACKNOWLEDGMENTS

The authors are grateful for the support of the National Natural Science
Foundation of China, the Research Grants Council of the Hong Kong
Government and the ACE (Advanced Chinese Engineering) Centre at the
University of Wales Cardiff. The authors also wish to thank the Bohai Petroleum
Company for providing practical data for the platform of example 2 and for
their financial support of the research.



JSV MS 2838 223/5 issue MB 17/5/99

       701

REFERENCES

1. M. A and T. I 1995 Earthquake Engineering and Structural Dynamics 24,
247–261. Tuned mass dampers for structures with closely spaced natural frequencies.

2. T. I and K. X 1994 Journal of Sound and Vibration 175, 491–503. Vibration
control using multiple tuned mass dampers.

3. M. G and H. X 1992 Journal of Wind Engineering and Industrial Aerodynamics,
42, 1383–1392. Optimisation of TMD for suppressing buffeting response of
long-span bridges.

4. K. K, K. V and K. F 1992 Proceedings of the Tenth
World Conference on Earthquake Engineering, Barcelona, 1–10, 2241–2246. Seismic
response of offshore platform with TMD.

5. L. L and Y. J. C 1996 in Theories and Applications of Traffic and Transpor-
tation Systems Engineering, 479–490. Beijing: Transportation Press of China. Wind-
induced buffeting control analysis for long-span cable-stayed bridge using passive
tmd.

6. Y. M. L and J. Q. H 1987 Vibration and Shock 5(4), 13–18. A generalised
iteration algorithm for the response analysis of damped MDOF systems.

7. W. Z 1988 Vibration and Shock, 6(4), 59–61. A comment on the article
‘‘A generalised iteration algorithm for the response analysis of damped MDOF
systems.

8. K. J. B and E. L. W 1976 Numerical methods in finite element analysis,
New York: McGraw Hill.


	INTRODUCTION
	BASIC PRINCIPLE AND ALGORITHM
	COMPUTATION PROCEDURE
	NUMERICAL EXAMPLE
	Figure 1
	Table 1
	Figure 2
	Figure 3
	Table 2

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

